Scalar Flat Kähler Metrics on Affine Bundles over CP1

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalar Flat Kähler Metrics on Affine Bundles over CP 1 3 2 Preliminary computations for Hirzebruch surfaces

We show that the total space of any affine C-bundle over CP with negative degree admits an ALE scalar-flat Kähler metric. Here the degree of an affine bundle means the negative of the self-intersection number of the section at infinity in a natural compactification of the bundle, and so for line bundles it agrees with the usual notion of the degree.

متن کامل

Flat Bundles on Affine Manifolds

We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine m...

متن کامل

Hermitian–Einstein connections on principal bundles over flat affine manifolds

Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...

متن کامل

Scalar-flat Kähler Surfaces of All Genera

Let (M,J) be a compact complex 2-manifold which which admits a Kähler metric for which the integral of the scalar curvature is nonnegative. Also suppose that M does not admit a Ricci-flat Kähler metric. Then if M is blown up at sufficiently many points, the resulting complex surface (M̃ , J̃) admits Kähler metrics with scalar curvature identically equal to zero. This proves Conjecture 1 of [16]. ...

متن کامل

The Scalar-flat Kähler Metric and Painlevé Iii

We study the anti-self-dual equation for non-diagonal SU(2)-invariant metrics and give an equivalent ninth-order system. This system reduce to a sixth-order system if the metric is in the conformal class of scalar-flatKähler metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2014

ISSN: 1815-0659

DOI: 10.3842/sigma.2014.046